בסיס (אלגברה)

מערכות צירים וקואורדינטות
מערכות צירים נפוצות
ראו גם

בסיס הוא קבוצת וקטורים במרחב וקטורי בה אפשר להציג כל איבר במרחב כצירוף ליניארי של הקבוצה, באופן יחיד. ניתן להגדירו באופן שקול בכמה צורות:

לכל מרחב וקטורי יש בסיס, ומספר הווקטורים שבבסיס מוגדר באופן חד-משמעי, והוא נקרא ממד. לבסיסים חשיבות עקרונית באלגברה ליניארית, בכך שבסיס קובע לכל וקטור את וקטור הקואורדינטות המתאים לו. לפיכך, בחירה של בסיס מאפשרת 'לממש' עצמים מופשטים המתייחסים למרחב (כגון העתקה ליניארית) על ידי מבנים קונקרטיים (כגון מטריצה).

בסיס יכול להיות סופי, או אין-סופי. אם במרחב יש קבוצה פורשת סופית, אז הוא בעל בסיס סופי (ולכן גם ממד סופי). ההוכחה לכך שלכל מרחב וקטורי יש בסיס מסתמכת על הלמה של צורן, וממילא תוצאה זו דורשת את אקסיומת הבחירה. בסיס שהווקטורים בו מופיעים בסדר מסוים נקרא בסיס סדור. פעמים רבות כשמתייחסים לבסיס מניחים שהוא אכן סדור בסדר שרירותי כלשהו.

במרחבים נורמיים יש משמעות להתכנסות של טור, ואז אפשר להגדיר 'בסיס טופולוגי': זוהי קבוצת איברים שאפשר להציג כל וקטור במרחב באופן יחיד כצירוף ליניארי (לאו דווקא סופי) של איבריה. בסיס טופולוגי בדרך כלל אינו בסיס במובן הרגיל (משום שהוא אינו פורש במובן הסופי), ובסיס בדרך כלל אינו מהווה בסיס טופולוגי (משום שנוצרות בו תלויות ליניאריות במובן של טורים).